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NUMERICAL SOLUTION OF A SYSTEM OF LANCHESTER
DIFFERENTIAL EQUATIONS

by

Svein B. Haugberg

ABSTRACT

Using the Runge-Kutta-Merson method a computer program was
developed for the numerical solution of a system of generalized
Lanchester equations, A detailed description is given of the
input-output features of the computer program and of the algorithm
used to solve the equations. Two sample problems illustrate the
use of the program and its flexibility.




INTRODICT TON

The purpose of this memorandum is to describe the development of a
computer program for numerically solving a system of generalized

Lanchester equations.

The system of generalized Lanchester differential equations [Ref. 1]

may be written as follows:
X=-£(0) v, [Eq. 1]
where  £(X) 20 for X 20, and with known initial values X(0). ‘

The vector X = (XI, Xos evny Xn), X, = xi(t), describes the number

of units engaged in combat in each of n different classes as a
function of time. The components fi(l) of f(X) are the
expected numbe+ of units of c¢lass i lost per unit time. The
i=:ri(t), is the rate of
introduction of new units in each of the n classes. Each

vector © = (ry, Igy..., rn), r

fifl) is assumcd to be the sum of m, contributions:

" |
1

£, (X) =j§l t‘ij(_ig) ’ (Eq. 2]

where fii(g) is the jth contribution to fi(x). The se
contributlons are generally associated with different tfactors

\ causing attrition of type I units,

} The remainder of this memorandum proceeds along the following ‘
lines, First, the method of numerically solving the system of

Lanchester equations, called the Runge-Kutta-Merson Method, is

discussed. Second, a computer program that performs the numerical




solution is described., Finally, two sample problems and their

computer solutions are presented. A complete listing of the

computer program appears in Appendix A,




1. THE RUNGE-KUTTA-MERSON METHOD CF SOLUTION

The Runge~Kutta method of numerical integration is one of several
tfourth-order processes and is applicable to all systems of 1lst
order diffcrential equations of the form X(t) = g[X(t), t]. and
therefore also to all systems of higher order that can be reduced
to the same tform. To start the integration, initial values cf

tsy X(t,) are required, The method employs a constant step length
in the integration. A difficulevy with this method is that it is
often not clear how to determine a proper step size to achieve a
known local truncation error at each step. The method of Merson
overcomes this dittficulty by automatically determining the step

length required to obtain a predetermined accuracy,
If we define g(X, t) to be

glX, t) = -t'(X) *r, (Eq. 3]
then the system off Lanchester equations described above becomes

X - gx v, (Eq. 4]

This more compact form will be used for the tollowing discussion

of the Runge-Kutta-Merson method.

Given tg, an initial time, X(t;), the corresponding initial

value of X, and h, the step length, the Runge-Kutta-Merson method
[Ret. 21 allows one to integrate g(_)i, t) to a later time

t, “tgth and obtain X(t, ) by the tollowing procedure.

First, let t , t
11 b

one integration step h  from tg to t; selected as follows:

, l.(_ and t'(l be tour intermediate points in




h
t = = 1+ -
‘a tb to 3
to "t T !-:- LEq.
Ld - Lo T h = t;

S " : ‘j S : J = 5 ®
Second, define X Xi(tj) and gy g,i(_)s(tj), tj} for
.i 0, a, b, Cy d, 1.

Third, compute E(ti) by performing the following five steps

(substeps ot the integration step h) for each value of 1i:

a : h
o= A - -
X X0 738
b o h ) <t
X = Xtz gy ¥ 'g.l)
¢ . h R . .b
i Kpvg (s v asy) [Eq.
d - h ” b XS
Xy o= Xyt og ot T odey rodey)
X! X (b, ) - X F D ey + 4%+
i i 1 o i i i

The method is of ourth order in h.

Merson has shown that it the step length h o is small enough, so
that we can represent g‘i[__)s(t,). t] by a lincar approvimation in

X and t, a good estimation of the truncation error in the

1

. 1 d .
computed X, i T |Xi - X’i . The relative error then becomes

h | 3 b 3 ¢ 1 d .
—— - AT - - 3 'f‘ ) P .

Y T I3 8, -% 5 Kl T I [Ea
3xi

The method of Merson for automatically adjusting the step length

is as tollows,

51

(H]

71




Given a predetermined relative accuracy e, if q; >e for at

least one i, the step length will be halved and the integration

repeated with this new h. This will gc on until q; < e for all i,
If on the athan hand n.~al22 £farn all i +tho ntnn loneeh 1111
I, on the cther hand, g, <2732 for 211 §, the step length will

be doubled, and this new h will be used in the next step.

To continue the integration, let t, and X(t,) be the new
initial values t, and X(t,) respectively, and repeat the
procedure described above.

The effect of non-linearities in g may overestimate the smallness
of the step length necessary to achieve the required accuracy.

It is also possible that the Merson process might underestimate

the error, but according to Ref, 2 no example of this type of

behaviour has been encountered.

Applied to a computer program, the advantage of the Runge-Kutta-Merson
method consequently is that the integration always will be performed

with the predetermined accuracy and that the step length is never

much smaller than necessary, which saves computer time,
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2. COMPUTER PROGRAM

2,1 Introduction

A computer program that performs numerical solutions of the system
of generalized Lanchester equations described in the previous
section has been written in ALGOL for the Elliott 503 computer.

The results produced by the program are the values of X and

the other time-dependent variables in Egs. 1 and 2,

for certain discrete values of time in a specified region [tin, tm],
where tin is the initial time, !(tin) is assumed known,

The program is built around a procerdure MERSON, based on the Runge-
Kutta-Merson method. For given values of X at a time ¢t, the
procedure MERSON computes X at a later time t + Dt by
successively increasing time with variable step length h antil

t + Dt is reached.

Another procedure, FUNC, contains all the functions fij(l) and

ri(t), and this procedure computes the values of the derivatives X
when called by MERSON.

2.2 The Main Program

The central part of the main program consists of a loop that
starts with the initial values t,, and i(tin) and computes X
at a later time b==tin + Dt by calling MERSON. The values of X
at this new time are used to compute the other time-dependent
variables for this t. These are obtained by calling FUNC. The
values of all the time~dependent variables are stored in arrays

for later output. 1In the next run through the loop the last values

of t and X are new initial values, and MERSON computes X at

t + Dt. The loop terminates at t=t (tm- ti, is an integer
multiple of Dt).




The rest of the main program provides for output. Some flexibility
exists in the choice of variables output; the different
possibilities will be given in the description ot input and

output.

2.3 The Procedures MERSON and FUNC

The Runge-Kutta-Merson method is described in Chapter 1. This

method is well suited for implementation on an electronic computer
(Ref. 37. Equations 5, 6 and 7, together with the accuracy
test, constitute the main part of the procedure MERSON. The following
quantities are required by the procedure MERSON when it is called

in the main program to compute X(t + Dt) for known X(t):

n, number of equations.
t, start point of integration,
2=t + Dt, end point of integration.

xi(t), (i=1, n), the values of X 1in the start point
of integration.

h, a starting value for the step length,

hmin, lower bound for the step length. (This prevents
indefinite cycling, otherwise possible in some cases.)

e, desired bound for relative accuracy.

With these quantities given,the procedure MERSON pertforms one step h
according to Eqs. 6 and 7 and the accuracy test with

t; " t, and calculates X(t;). The derivatives X; = 8 (i = 1, n)y,
needed in every substep, are calculated by calling FUNC before uucw
ot them. 'The computations are continued by letting ty and X(t,)
be: the new t4  and l(to) respectively. When the integration has
reached a stage where tgth exceeds the end point of jntugrﬂlion..
/v & Final step length ¢2-ty will be used to reach ¢ vxnvtly.‘

For this last special step a better accuracy than the one needed

will result because 2z~ tg<h.
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lS:ore t ard X(z) for a possible repeated integration l

oes t+h Yes
exceed tlecid >—
ownt z 7

1

Set h equal to the rest
of integration range
J

|

Perform substeps l-& of the step h,
compute new t arnd X(t)

Compute X, for the 5th substep, and
the corresponding truncation error

forfall i
fromll to n

<

Yes

runcation error greate
than the desired
accuracy ?

i)
[ﬁalve the step 1engcﬁ]

If h is less than or equal to h min, Is h less

rin erel ru ion error
princ the relative truncation o \\\&E::\f nin?

t is now equal to the time at the

. Set h equal
end point of the step h No to h min

1

as the truncation
error less than 1/32 of
the desired accuracy
forall 1 7

Restore t and X(t) and go back
for repeated integration with
this new step length

&

Yes

If £t is not equal
to the end peint 2
double the step
lergth

L -

Is t equalto
the end peint 2 ?

End MERSON

FIG 1 FLOW DI AGRAM FOR THE PROCEDURE MERSON




Results produced by MERSON are:

t, its value is now that ot 2=t + Dt,.
Xi(t), ti = 1, n), the values of X at the end point.

g.(X. t}. (i=1. n). the values arf the derivatives Y
1 - . - 3,

Xi at the end point. !

h, adjusted step length.
A flow diagram tor the procedure MERSON is shown in Fig. 1.

It apprars trom the flow diagram that it h becomes less than
hmin, hmin is used as the step length instead of h. This is in
order to avoid particularly long run time on the computer. In this
case, however, it might happen that the desired accuracy is not
satisfied. As an indication for the user of the program, the
character followed by the relative truncation error is printed

in the table of Xi1t) every time hmin is used as the step
length.

]

2.4 Qutput and Input

The results ot the computations are printed out for certain discrete
values of t, starting with tin and increasing repeatedly with a
constant time interval Dt until tm is reached. Since the
integration of each interval Dt is an independent computation

with new initial conditions, these initial conditions can be changed
at the start point ot any interval. Therefore at these points the '
analytical form of the tunctions fii(l) and ri(t) can be changed,
and instantancous introductions of utits ot any class i can be made.
whenever such changes or introductions gccur, the region ot
integration has to be divided into smaller regions such that all
changes and introduct ions occur at the start point ot a region, and

that. vvery region is an integral number Dt.

()11t,g)\lg;

As mentioned above, the program allows for a choice in the selection

of variables and combinations ot them given as output.  The out put

10
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consists of:

a. The number of units introduced instantaneously and the
corresponding instants in time.

b. Xi vs t for i=1, n.

€. X v xj for specified index pairs (i, j).

d. . vs t for specified indices i,

e, r. vs ¢t for specified indices 1i.

i (in percent) s t for specified indices i,

and specified indices j for each 1.

f. tij/t.
g. fi/fJ vs t for speciried index pairs (i, j).

The last five outputs are optional and may be skipped by not
specifying any indices. This output form enables the user of the
program to study the importance of instantaneous introductions and
changes in attrition functions and introduction rates, and the
relative impsrtance of the different contributions fij(z) causing
attrition of type i wunits. This will be illustrated by the
sample problems in the next chapter,

There are two forms of output: paper tape and plotted. The paper
tape output is punched on the Number 1 punch, and, of course, must
be run through the Flexowriter to obtain a printer output. The
plotted output is generated by the Calcomp plotter,

Input
There are two kinds of input to this program: input parameters

and input functions, These are listed in Tables 1 and 2,

11




IABLE 1
LIST OF INPUT PARAMETERS

In the following list the letter in parentheces followir

ha~a
a’l

.d
ot

explanation indicates whether the variable is integer (I) or
real (R).

N, number of differential equations

DT, the constant time interval between two following

output points

H, a start value for the step length
HMIN, lower bound for the step length

E, desired bound for relative accuracy

MI, maximum number ot contributions m. of

t‘ii(y to r.(X) (i=1,n), [Ml’—‘—max(mi)vi=1,n].

NT, number of time regions according to the instantaneous

introductions and the change of functions

NS, number of pairs (X, Xj) to be plotted
(X, Vs Xj, t as a parameter)
NL, number of outputs (print and plot) of f,; Vs t
NR, number of outputs (plot) of Vst
N2, number of outputs (print and plot) of

rii/ri vs t  (number of different indices i)

NP, number of outputs (print and plot) of
.'l-. .. '
tl/'.l Vs

MALD (L 1, NIV, number off Dt in ecach of NI regrons
(the lengths of the regions are MAL. DT).
Ir, initial time

DX['L,2] (J 1, N for each 1 1, NI}, instantancous
introductions of units in the start point of
tregion L, The anitial values ot .\ili 1, n)

are included heve 10 ),

(1)
(R)

(R)
(R)
(R)

(1)

(1)

(1)

(T)

(1)

1)

(1)

{R)




in NP

i, V (K=1, N3), specitication ot indices in NS plots
of )(.1 Vs va

U (I=1, N1), specification of index in Nl outputs
ut’ i'i va i

U, Ml (J=1, N2), specitication of index i and number of
different indicex j tor vach i in outputs
of fi;"/t'i vt

V (K=1, Ml tor ¢ach J=1, N2}, specitication of index j
in M1 outputs of fijffi st

U, V (J=1, NP), specification of indices | and j
outputs of t‘i/t'.i vs t

U (I -1, NR), specitication of index in NR outputs
ot ri vs t

The input data must be given numerical values and punched on a

data tape in the following order:

N, DT, H, HMIN, E, MI, NI, NS, N1, NR,
MA[L] tor L=1, NI

T1

(DX[L, J] for J=1, N) tor L=1, NI
(U, V) for K=1, NS

U for 1 -1, NI

(G, ML, (V tor K -1, Ml)) tor J 1, N2
tt, V) tor J 1, NP

L tor I -1, NR

N2, NP

(1)

(1)

)

(I)

(1)




TABLE 2
LIST OF VARIABLES USED IN THE INPUT FUNCTIONS

T, corresponds to t
X{I] (I=1, N), corresponds to xi(c)

FX(1, J] (J=1, Ml for each I=1, N), corresponds to
f..(X)
1] =

RT[{I] (J=1, N), corresponds to ri(t)

In contrast to the input parameters, which are entered as
numerical values, the input functions fij(z) and ri(t) are
entered in the form of program statements in the procedure FUNC.

How this is done is explained in Chap. 3.

2.5 Limitations, Timing

Because of the limited capacity of the computer store, the upper
bound for the number of differential equations the program can

solve is 19, However the practical bound is lower because the
running time for 19 equations is probably excessive. The limitations

resulting from the output format are:

Maximum number of equations: 14
Maximum initial value of X;: 9999 units
Maximum length of the region of integration: 200 days.

These can be changed if necessary by altering the program.

It is very difficult to estimate the running time for a given sot

of equations, The running time depends on the number of cquations,
the desired bound for relative accuracy, the form of the equations,
the length ot the region of integration and the output torm. However,

the tfollowing results give some indication of the running time,

14




For the two sample problems in Chapter 3 the number of

equations was 2, the desired bound for relative accuracy was 0.01,

and the length of the region of integration was 100 days. The first
has one contribution to each attrition function fi(i), and the

second has two contributions. The running times were § and 11 minutes
respectively,

A system consisting of 5 equations and a maximum of two
contributions to an ati.rition function has also been run. The

running-time was approximately 30 min,

15




3. SAMPLE PROBLEMS

Two sample problems have been solved to illustrate the possibilities
of the program, The first one shows how to make instantaneous
introductions of units and how to change the analytical form of the
introduction rates, The second one shows how to manipulate a

system with more than one contribution to the attrition of some

classes of units,

3.1 Problem 1l: Lanchester Linear Law with Replacement

Consider the system of two simultaneous differential equations

»

Xy

-QX; XB + l"i
XKy, = -BX; X, *r,
with initial values X, (0) = 1000, X,(0) =50, and attrition

coefficients @ =510 %, g==2-10‘5. This is a system of

Lanchester equations with

lagd
.-
<
-
il

£, (X) = aX X,

£a(X) = fy,(X)

BX, Xz

(only one contribution fij(z) to each fi(l)].

An additional 400 units of class 1 are introduced at time t = 20.
Introduction rates:

ry(t) = 0 for all t

0 for t <50

ralt) = 41 for t>50

Ky




The following part of the optional output is desired:

a. X, vs X; (t as a parameter)
k. Y.oova t, LT, o

1
C, r, vs t

Input parameters. Let the region of integration be 100 days.

According to the instantaneous introduction and the change of
introduction rate, the region of integration is divided into
three sub-regions: G6-20, 20-50, and 50-100. The instantancous
introductions must be specified at the start point of cach sub-
region. This means that the following six numbers must be given

as input:

Class 1 Class 2
t =0 laco . 50
t =20 400 0
t =50 0 )

The time interval Dt must be chosen such that the three sub-regions
become an integer multiple of Dt, Let Dt = 5, This implies that
the number of time increments Dt in cach sub-region is 4, 6 and 10
respectively., Furthermore, let the initial value for the step
length be 1 day, the lower bound for the step length be 0.01, and
the desired bound for the relative accuracy be 0,01 (1%). This
gives the following scheme of input data to be punched on paper

tape (for definition of input paramcters sce Table 1):

DATA:

2 § 1 0,01 .01 1 23 1
b 10

1 o o

te

0
oo 50

300 0
G 0

2

1 A

2

END OF DATA;




>

Input functions. The input functions fij(z) and ri(t) are

easily inserted into the procedure FUNC by copying the existing

paper tape for the procedure up to and including the line
Heomment Tnaert the input funrtione;!

and punching the following four statements:

FX[1,1]:=0.00054X[1]#X[ 2] 3

Fxt_,lj.—o 00002:XT1]#X[ 213

RT[1]:=0.0;

1f L=1 or L=2 then RT[2]:=0.0 else RT[2]:=0.1;

(The three s:b-regions are identified by the values L=1, L=2
and L= 3 respectively.) Then copy the rest of the tape. The
procedure FUNC then takes the following form:

£Numerical ‘solution of a system of Lanchester differential
equationsy;

begin procedure FUNC(N,MI,T,X F,FXS,FX,RT,L);
value N,MI;real T; 1nteger sMI,L;
arrax X,F FKS FX, RT'
begin xnteger J, K

comment Insert the input functions;

FX[ 2,1]:=0.00002%X[1]*X[2];
RT[1]:=0.0;

Fxﬁl y1]:=0.0005%X[1]#X[ 2]
if L=1 or =2 then RT[2]:=0.0 else RT[2]:=0.1;

for J:=1 st 1 until N do

’ EF‘;n FXS[J]:=0.0;
or K:=1 ste 1 until MI do
FXS J]'FX 'J Kl
F[J :=~FXS +RT J]s
__2,
end FU

Output. The numerical values of all the output variables are given
in printed tables obtained from the output paper tape. The plotted

output is prescented in Figs. 2 to §.
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Figure 2 shows the number of units in class 1 and 2 as a function

of time. The effect of the instantaneous introduction of units in
class 1 at t=20, and the change to a non-zero introduction rate

in class 2 at t=50 is obvious. However the result of the combat,

’
if continued. does not hecame claan From ¢thi

~
- arey

N
[
&)

Wiré, The ploiting

of X, vs X, with time as a parameter in Fig, 3 is very useful in

o

examining this. The instantaneous introduction changes an apparent
victory for class 2 to an apparent victory for class 1. However, ‘
after changing the introduction rate of class 2 from zero to a

constant non-zero value, it seems as if class 2 will win the combat.

Figure 4 shuws the number of units lost per day as a function of
time for class L and 2, The two curves are identical in this case
because fy is nroportional to f, and the plotted values are
given as a percetege of the initial values.

Figure 5 shows the introduction rate of class 2 as a function
of time,

3.2 Problem 2: Lanchester Mixed Law

Consider the system of two simultaneous Lanchester differential
equations

tad
-
!

—.-(Q; x,_ xa+a2 XQ) + t‘:

X; = -(8 X, Xat By Xp) + r,

with initial values X, (0) = 1000, X3 (0) = 50, and attrition
coetficients a1=4.10'4, &, = 0.1, 8, 1.8o10'5, 8; =0.002,

This system has two contributions, fii(i).to each fj(5)=

Py (X) = £ (X) + £,.(X)

Fa(X) = £ (X) + Foa(X)




where

£y (X) e, X, X;, fy,(X) =a;X,,

I

fa(X) = 8, X, X,, £,(X) = 8, X,.

Let the introduction rate r,(t) be zero for all t,

The following part of the optional output is desired:

a. Xz vs X, (t as a parameter)

b. fi. vs t, i=1, 2,

c. fij/fi vws t, j=1,2 for each i=1, 2,
d. fa/f, vs t.

Input parameters. Let the length of the region of integration, the
interval Dt, the initial value for the step length, the lower bound

for the step length, and the desired bound for the relative accuracy

be the same as in Problem 1, Since neither instantaneous

introductions nor analytical changes of the functions fij(l) or
ri(t) occur, there will be no division of the region of integration.
This leads to the following scheme of input data to be punched

on paper tape (for definition of input parameters see Table 1):

DATA:

2 5§ 1 0,01 0,01 2 1 1 2 o 2 1
20 '

0

1000 50
271

1 2

1 2 1 2

2 2 1 2

1 2

END OF DATA;
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Input functions. In the same wa» as in Problem 1, the existing paper

tape tor the procedure FUNC is copied and the following statements

inserted:

FXC1.118=0,00040X 10 X[ 2]5 FX[1,27:=C,1:X[21;
FXF'..,1]:=O.U(J0018=‘X{:l]*Xl\_2]; FX[2,2]:=0.002%X[2];
RT[171:=RT[ 21:=0,6;

Output. The numerical values of all the output variables are given
in printed tables obtained from the output paper tape. The plotted
output is presented in Figs. o to 11,

Figure 6 shows the number of units in class 1 and 2 as a function

of time,

Figure 7 contains the plotting of X, Vs X, with time as a
paramcter,  This figure clearly shows the result of the combat,

it continued,

Figure 8 shows the number of units lost per day as a function cf

time for class 1 and 2,

Figures v and 10 are very convenient. in examining the relative
importance of the different contributions to an attrition

function ri(l)' Figure 9 shows that l}1(£) constitutes the
greatest part of Fl(i) in the beginning ot the combat., However,
as the time increases, 133(1) increases while f), (X) decreases;
consequent Ly ty (X) will dominate atfter some time. The same

relation appears in Fig., 10 tfor t,(X) and t,5(X),

Figure 11 indicates that number ot ¢lass 1 units lost per class 2

unit lost increases with time, emphasizing the tact that class 2

will win the combat.,

e~
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3.3 General Remarks About the Input Functions

Sample problem 1 shows how to change the analytical form of one
tunct ion l‘i(t) tor some t, The same is of course possible for
any Pi”“) and any tli‘j (X). If some change exists tor a function,
say 15,(X), the analytical form of this function must be specified
for every sub-region (L=1, N1) in a statement of the form

irdicated in Problem 1.

sSince MI is the maximum number ot contributions l‘.LJ.()_(_) t.o

[‘,‘5) (i =1 n), some ot the tunctions FX[I, Jj may of course be
equal to sero. However, all of them have to be inserted into
FUNC{J= 1, MI tor vach 1 =1, N). Likewise, all the functions
RI[1] (1 =1, N) must be inscrted.

It it happens that two or more of the contributions t'iJ.(_x_,)
tor the same index i are not desired as output, these may be
put tugether in one tunction FX[I, J1, This will reduce the running

time on the computer,
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APPENDIX A

COMPUTER PROGRAM LISTINGS

ENumericsl solution of a syatem of Lanchester differential equations?;

begin procedure FUNC{N MI,T,X,F FXS,FX,RT,L};
comment This procsdure contains the input functions.
Paraneters:
N, number of equations,
MI, maximum number of contributions to one attrition funetion,
T, o variable for the time,

X, array containing the number of units in each class at time T,

F, array containing the values of the derivatives at time T,

X5 ,array containing the valuss of the attrition functions at time T,

FX, array containing the values of the different contributions to
the attrition functions at time T,

RT, array containing the values of the introduction rate functions
at time T,

L, variable which has the value i when T in first aub-region, 2
when T in second sub-region .,,....;

<

|

begin integer

comment Insert the input functions;

for J:=1

alue N MI;resl T;integer N NI L;
array X,F,FXS§,

".RT:
J,K;

step 7V until N 22

begin FxsTJ1:=0,0;
125 K:=1 3522 T until Ml gg
FXS[JV:=FXSTI1+PX[J ,K];
P{J):=-PXS{J)+RT(J]);

ond;
end FUNC:




procedure MERSON(N,MI T,Z ,H HMIN,E X F,FXS FX ,RT,LL);
compont This prccedure performs the integration froa T to 2,
Frrsmoters:
2. ond point 0! integration,
Y, starting velue for the step length,
HMIN, lower bcund for the step length.
E., desired bound for relative sccuracy.;
valiue N MI HMIN E;:
real T 7 R HMIN E-
integer N ,NI.LL:
LITAY X,?, 7XS PX AT
comment Varisbles:
Q, 1. The rest of the interval of iategration.
2, A variabls used in the computation of the five sub-steps,
J. 4+*{Truncetion avror),
J, 1. A variable used in the computations of the five sub-steps,
2, Uz=abe{X[1)y.
H3=H/%
HS, storss H for a posaible restoring,
TS, etéres T tcr a possible repeated integration,
Ei=%*E
1,5,5%,indsx variables,
G, sarray storing X for ¢ possibdle repested integration,
P,L,urrays for teaporary storing in the computations of the five
sub-stsps,
Buolean variables-
BC.true if EY
EF=felse if the conditions for doubling the step length are not
satisfied,
BH=false if the step length is halved.
HR=talse 1f H ier squal to the rest of the interval,
BX=false 1f H=HMIN:
begin real Q,U,H3 HS TS ES;
integer I,J,SW:
array G, P,L{1:N];
Boolean BC,BE,BH BR,BX;
switch £§8:=SAVE BACK;
cosment Check some input parameterc and initialize;
if HMINCO then HMIN:=0,.07%abs(H);

BH:<BR'=BX '=true:
BC*=E<T;
E:-abs{E);
ES:=8*E;
H:=abs{H) :

SAVE: if BC then
Bagis T8 =T
for J:=1 stap until N do
GlaY:=X(J]:
and;




BALL: HS:=H;

Q' =T%H-Z;
BE:=true;
comment Test end cf integration range;
13 Q0 then
Degin Hixs-T;
BR:=false;
ond
Next integrate one step;
H3:=H/3;
for SW:=1 step 1 until 3 do
begin switch 5C<=SW1,5WEX,SW3,5W4,5WAX;
FUNCC(N ,MI, T ,X,P,FPXS,FX,RT,LL);
for I:=1 step 1 until N do
bo‘m switch §:=8T ,37T2, ST3, ST4 ,573;
switch S§8SS:=NEXT;
Q:=H3+FP[1]);goto S[sW];
ST1: LII):=U:=Q;Roto NEXT;
§T2: U:=0,5+(+LI1]);goto NEXT;
§T3: Pl1]):=U:=3*Q;
U:=0,375*(U+L[1]) ;goto NEXT;
§T4: LI{1):=U:=L{1)+4*Q;
U:=1,5¢CU-P[1]) ;goto NEXT;
STS: U:=0,8+CQ+LI[1]);
Q:=abe(2*U-~1,5*(Q+P{I]});
NEXT: X(11:=G[1]+U;
_i.__f_ SW=5 then
begin if BC then
in U:=abs(X[1]);
=12 U<u~3 then ES else E5+U;
commor.t Teat adjustment of the step;
if QXU and EX then
gin BR:=true;
:=false;
H:=0,8*H;
i HCHMIN then
in H:=HMIN;
BX:=false;

EFI

g

-
-

;

end The stop was halved, rostore X and T, snd o
for repeated integration with this new step;

for J:=1 step 1 until N do

‘

X(o):=6(J7;
T:=TS;goto BACK;
end if Q;
:lf Q0.,03125*U then BE:=false:
end 1 t BC;
if not BX then
gin t_ I=1 thon print punch(i) ,2€18107?;
print pun (1) ,sameline ,C*? ,0caled(4) ,E*Q/U;
and;
end if SW;
ond | for 1
‘g o S5[SW1;
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§W1: T:=T+H3;goto SWEX;

SW3: T::M.S‘HS;‘oto EWEX :

S¥4: T:=Tv0,.5*H;

SWAX: H:=N; comment Duamy statement;
SWEX: end for SW;

4 ’ B dhaa

~n  arw weswas

begin ¢ nt Test a possible doubling of the step;

procedure AXPLOTY TM,XM,R1,R2,11,12);
comment This procedure plots sxes and axe values for the
axe values given.
Parameters:
T, maximum abscisea value,
XM, maximum ordinate value,
R!,R2,scaling factors,
11,12 ,number of divitions required on the two axes;
r»ul TI,XI.P‘I R2;

1ntogor 11,12;

bagin intonr Js
11:=(TH:+4,C)/10,0;
R1:=780.0/C€10,0*11) ;
I12:=0XMs¢4,0)/10,0;
R2:=600,0/C10,0*12) ;
setorigin( 200,R1 ,R2,1);
axes(10,10,11,0,12,0);
plotter(10,1);
lor J:=0 step 1 until I Jdo
bo‘in movepen{(J+*10,0-30 0/?1 -20,0/R2) ;
Eint digita(3) ,J*10;
nd
Jor J:=0 step 1 until 12 do
begin movepen(-80,0/R1, J*70.0-6,0/R2) ;
Brlnt digitse(3) ,5*10;
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coxment The main program contains s loop caliling MERSON repeatedly and
storing the values of the variables st the end points of every
interval DT, The rest of the main program provides for output,
Variables:
DT, the interval length,
TM, end point of the region of integration,

XM, YM , maximum axe values for plotting.
T I 21 indexw variablas,

M, index variable for thes time output points,

M1 ,N2,U,V,integer variables with different applications,

N1, number of sub-regions of integration.

NS ,N1,NR ,N2,NP,inputparaxeters vhich provide for the optional output,

MA, array containing the number of DT in eaci sub-region,

MM, array containing the value of M at the start point and end
point of every sub.region,

NN,N3 ,N4 ,NM N3 N6 ,arrays etoring the different indices used in the
optional output,

TPL,XPL ,FXSPL ,FXPL ,RTPL ,arrays storing the values of T ,X,FX5,FX and
RT respectively in the output points,

DX, array containing the instantaneous introductions of units at the
start point of each sub-region;

begin real DT.H,AMIN,E,T,TH,Z XNM,TM R1,R2;

integer I,J,K,L,M,N,I1,12,MI,M1,M2,N1,N5,N1,NR ,N2,NP,U,V;

read N, DT ,H AMIN .E,MI, NI ,NS,N9,NR N2 NP;

if N> NF then I:=N else I:=NP;

begin integer array MA[7:NI],w17:2*NI] ,NN[C:N1]1,N3 N4[0:N2] ,NM[O:N2,7:¥1],
NS ,N6[0:NP];

M:=0;

for L:=1 step 1 until NI do begin read MA[L);M:=M+MA[L] end;
M:=MeNT;

punch({1);

pPrint ££1s1?NUMBER OF EQUATIONS, N =?,sameline,digits(3),N,

€21817A GUESS FCR THE STEP SIZE,H =?7,sameline,scaled(4) ,H,

€f181?7LOWER BOUND FOR THE STEP SIZE ,HMIN =7,sameline HNIN,

€218 ?DESIRED BOUND FOR RELATIVE ACCURACY, E =7?,sameline kK;

begin arrey X,F,FXS,RT(1:N],TPL{O:N];

comment CBS :; array XPL(1:M,1:1),FXSPL,RTPL[1:M,7:N],FX[1:N,1:M1],
FXPL[1:M,7:N,1 ¢tMI],DX[1:NX,1:N];

seitch 5:=L1,L2,0L3,L4,1.5,0L6,L7,L8,L9;

commont Read and print initial values;

read T;TPL[O]):=T;

for L:=1 step 1 until NI do

For J:=1 step 1 until N do read DX[L,J];

print £€13s1 2 INSTANTANEOUS INTRODUCTION QF UNITS:? ,£€12897T7;

for I:=1 step 1 until N do print samsline ,22e6?7DX? ,digits(2) ,1;

T™:=T;

for L:=1 step 1 until NI do

bagin print €€17?,sameline,scaled(4) ,TN;
for J:=1 step 1 until N do print sameline,scaled(5) ,x(L,J];
TH: =TW-MA[L]*DT;

oend;




rint 221389771?;
;or I:=1 step 1 until X do

print sameline,?€s77X? ,digite(2),I;

for Ji=1 step 1 until N do begin XPL[1,J):=DX[1,J];X[J]:=0.0 end;
M2:-0:

comment Start integration of each sub-region with new initial
values X[J];
for L:=i step i until Wi do
£in M7 =M+ 1 ;M2 =Mt+MALL] ; MM( 2511 ) : =M ;[ 2°L] s =M2;
TPL(M1]:=TPL(M1-1];print €2177,sameline,scaled(4),T;
for J:=1 step 1 until N do
bogin x{JY:=x( s)%DxfL, 3] ;print sameline ,scaled(5) X[J]:
if L>1 then XPLIMI,J]:=100.0*X{J]/XPL[1,J];
end;
comment Call FUNC for computation of the output variables
at the start point of sub-region no, L;
FUNCCN,MI, T .X,F FXS FX,RT,L);
for J:=1 step 1 until N do
begin PXSPLIMY ,JT:=FXs(JT;RTPLINI ,J):=RT(J];
for K:=1 step 1 until NI do
FXPL[ M} ,J, :=P!|J.Ki:
ond;
comment THM=the value of T at the end point of sub-region no, L;
TM:=T+MA[L]*DT20,1 ; M: =MV ;
commont Call MERSON and FUNC repsatedly for computation of the
output variables in each output point in sub-region no. L;
for Z:=T+DT step DT until TM do
begin MERSON(N ,MI,T,Z ,H HMIN,E X, P, FXS,FX RT,L);
PUIC(!!.I! ,7T.X,F ,FXS,FX,RT,L);
M:=M+1;TPLIN] : =T
comment Print T and X in output point no, M. Store the aame
values for 18ter plotting;
Print ££177,sameline,scaled(4) ,T;
for J:=1 step 1 until N do )
begin print sameline,scaled(3) ,X(J];
XPL{M,J]:=100.0*X{ J)/XPL[Y,J);
FXSPLIM,J] :=PXS[J);RTPLIN,J]:=RT[J];
for K:=1 step 1 until MI d»
mz.u..:,m::rx[.r,x!;
ond;
end;
ond for L;
comment Plot X[1],I=1,N, va time;
XM:=100.0;
for J:=1 atep 1 until N do

for L:=2 step 1 until 2¢NI do

Begin a1 :=afL]);1f XPLIMI, JT>XM then XM:=XPL[M,J];end
AXPLOT(TN XN ,R1,R2,11,12);

=Ovepen(330,0/R1 ,-40,0/R2) ;

\

I

g

print plotter(10,1) ,2Time(days)?;

movepen( -30.0/R1,100,0/E2);

print plotter(10,3) ,ENumber of units in per cent of initialvalue?;
movepen( ~180.0/R1,800,0/R2) ;

print plotter(10,1) ,2Initial?;movepen(-180,0/R1,480.0/R2);

print plotter{1C,1) ,Evalues:?;




for J:=1 step 1 until N do
bogin lovopon(-lao O0/R1,(480.0-20.0*J) /R2) ;

print plotter(10, 1) ,8X7?,digits(?) ,J,€=?,a)igned(4,n) ,XFL[1,J];
end;

for J:=1 step 1 until N do
‘1n -ovopon(rPLLlJ 100 u);
penlower:
for I:=2 step 1 until M do
drawline(TPLL I),XPLLT,J]);
print plotter(10,1) ,£X? ,digits(2) ,J;
end of plot x[1];
lnvopon(o 20+12) ;
comment Plot X[I] vs X[J) for specified index pairs (I,J);
!1 N5=0 then goto L1;
for K:=1 atep 1 until NS do
E=-in roud u,v;
for M=V do
begin for W2:=U do
begin xu::n::wo.o;
for L:=2 step 1 until 2*N1 do

begin if XPLOMMIL],M11>XM then XM:=XPLIMM[L],M13;
—‘n YELI ML), N2 1>Yi then YR:=XPL[MM[L),M2];

ond-
AXPLOT(XM, YN, R1 ,R2,11,12);
movepen (100, O/R1 -40, O/RZ),
print plotter(10,1),
€Number of units in per cent of initialvalue, X?,digits(2) ,i1;
movepen{-30,0/R1,50,0/R2) ;
print plotter(10,3),
€Number of units in per cent of initialvalue, X?,digits(2) ,M2;
movepen( -180,0/R1,500,0/R2) ;
print plotter(10,1) ,€Initial?;movepen(~180,0/R1,480,0/R2);
print plotter(10,1) ,2values:?;
for J:=1,2 do
bsgin Invopon( -180,0/R1,(480,0-20,0%J) /R2) ;
print pletter(10, 1) ,€X?,digite(2) ,(1f J=1 then M1 olse M2) ,£:=7,
aligned(4,0) XPL[1.(lf J=1 then M else  M2) 1;
2nd;
lovopon(loo 100) ;
print plotter(10,1) ,£ T=?,aligned(2,0) ,TPL[1];
movepen{100,100) ;
penlower;
for 1:=2 step 1 until M do
drawlins(XPL[ I ,M1] ,XPL[Y M2]):
sovepen(XPL[M, M1)-60,.0/R1 ,XPL[{ M,X2])
print plotter{(i0,1) ,2T=7 ,alignad(3,0) ,TPLI{N];
movepen(n, 0*12):
end;
end;
ond of plot X[11 vs X[J1;

-
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comment Print FXS[I] vs tize for specified indices I:
L1: punch{1);if N1=0 then goto L2;
1nt ££13892T7;
I'-'l atep 1 until N1 d":

bogin read U;
NN[I]'zu,Erint sameline ,£€877F7 ,digita(2) ,U;
end;

for J:=1 step 1 until M do
¢1n prtnt g£€1%7. ln-olina -oglgdqq),sz{J};
ror I:=1 atop 1 until N1 do
grint samaline ,scaled(5) ,FXSPL[J.NN[I)];
end of print FAS[I);
co-ont Print FX{1,J1/FXS[1] for specified indices I, and specified
T 1indices J for each I;
L2: if N2=0 then goto L3;
print ££€1389?721T7;
Yor J:=1 ste 1 until N2 gg
Begin read U,u;N3[J]:=U;N4[J]:=M1;
for K:=1 ste E 1 until M do
gin ro:d
print lu-olino,22-4?F?.d1gitl(2),U,V;
NM[J K] :=v;
for I:=1 step 1 until M do
FXPL(1,U,V 1=100,0*FPXPL[ I ,U,V]/FXSPL[1,U);
end;
print €£181027;
nd;
or [:= step 1 until M do

[ 4
-3

!

[a

begin 2 rint €£197,sameline ,scaled(4) ,TPL[I1];
for J:=1 step 1 until N2 do
begin |n-- alJsl;
for ._1 lto 1 unttl N4[J) do
‘ =NM(J ,K
Erin lnlolinc no.lod(s).r!PL[I.I1.l2]:
and;
print €€18107?;
ond;

zgé-;? print FX[I,7]1/FXS[1];
comment Print FXS[I1]/FXS[J] for specified index pairs (r,J3:
L3: if NP=0 then go to L4;
Erlnt €£138977T7;
for J:=1 step 1 until NP do
begin read U,V:NS[J1:=U;N6[J]:=v;
grin sameline ,£€8"?F? ,digits(2) ,U,8/7?,V;
for I:=1 mtep 1 until M do
XPLL1,J]:ZFASPLIT, Ul /FXSPLIT,V);
ond;
for T:=1 ste ep 1 until M do
begin print £2177 ,samel ine ,scaled(4) ,TPL(1);
for J:=1 step 1 until NP gg
print samoline ,scaled(8) ,XPL(1, J];
end of print Fxs/1)/Fxs(J]);




1.3

comment Plot FXS[Y) vs time;
IT N1=0 thay goto IS
X“ -100...
fOl‘ Jizi step - .mt il M do
b_g}n MY N[ JT:
LC?_: 12 ‘( :‘tb j untii m Qo
FXSPLI (%1 ]:2100,0°FXsPLTT M1 }/FXSPLI 1 ,M1);
fcr 1.:=2 atep ' until 2*NI do
begin M2 -MM[L),;if FXSPLIM2 M1)>XM then XM:=FXSPL[M2 M1] end;
end;
AXPLOT( TN, XM RI ,R2,11,12);
moveper{35¢,0/RY  -40.0/R2) ;
prinv plct"or(‘o.ﬂ ,€Time{davsa'?;
roveven” -50.0,R} ' 0.0/R2) ;
print plot:ar(.o,s“, ,ENumb. of units lost per unit time, in per cent
of init,val,?;
movapen? -i 80,0/RY ,500,0-R2; ;
print piotter(10.') ,£Initial?;movepen(.180.0/R1,480.0/R2);
reint plotzar’ 0,t) €values:?;
for J:=% Bten 1 until N1 E_?,
bagin wovepea(-180.0/R1,(180.0-20,0*J) /R2) ;M1 :=NN[J],
print plotter{10,7) ,€F? digits(?) ™! €= ? .aligned(2,7) ,FXSPL[1 ,M1];

304

L@: I=1 «*an i ouaril NY do

Bagin movepss !PT 1.105.3) -M*;=NN[J];penlower;
for 1.=2 atep uat:l M do dranlxne(TPL[I] FXspL[I M1 ]}
prirt pletrer{: RN digxtorz) M

s-d of plot FX3[11;

2.8

nOvepen n 20¢12) .

comment Plot FX[I,J)1/FAS(1]

':f_ 2.0 then gato L6,

for J:=9 stefr y until N2 do

begin U=N3fu);MT:=N4[J);XN:=0,0;

"\
o b

Yor K:=1 ""E’ until M do
bagin VNS ,RTT

“o- 1.:=1 ste 21 until 2sNI do

Deyin M2:=MM[1.1;H:=aba{FXPLT¥2,U,V]}

If XM then XM -H;

ad.
vm’l
QXlLDT’iﬁ XM RY R2, ,12% -
mavopeni2s0 .0 /R, --m 0/‘:-.2\
prin® plotterysn 1% €T me\dnya)”;
movepen( -5 .0 R1,L'00.0/R2) ;
p:irt plotterlj0,3} £F 1 J/F T ,in per cent?;
ot K:ad stop 1 unti'l ¥1 do
h__g_in v =NM[J K]
At FXril: U.v170 then
___g_xr. mcvepen{ TPI. F*7 -FxPLIYT .UV : penlower:

far 1.-2 stop 1 ur‘t:l M do drawline{(TPL[!],-FXPLII U, V],

pFriat piotter(*d ‘) &-F? dn‘fltll' ) L,ULN O
fod olae




begin movepen{TPL{1] FXPL[1,U,V]) ;peniower;
12!'_ 1:=2 step 1 until M EI_B drawline(TPL[1],FXPL[I,U,V)]);
print plotter(10,!) ,€+F?.digits(2) U,V ,€/F? U;
and;
ond;

e mamFA WAeTAY
WY OPTINY, W sk

end of plot FX[I,J)/Fxs(1];
cosment Plot FXS[(I)/Pxs{J];
L6: if NP<O then goto L7,V.=0;N°=NP;

e ———

L9: Tfor J:=1 step 1 until N do
begin XM:=0,0:

for L:=Y step 1 L_lﬂ}_ﬂ 2*N1Y 39
begin M1 :=MM[1],
1t XPL(MY,J)>XM then XM:=XPL[M1,J];

and;

E- =1.0;

1f Xx>200.0 then
begin K:=1-

for K:=K*10 while XM>200.0 do

begin M2:=K;XM:=XM/10.0 end;E:=1,0/M2;

ond;
if XM<20.0 then
begin K:=1;

_f_q_;_ K:=K*10 while XW<20.0 do

begin M? =K:XM:=XM*10.0 end E: =M2;

snd;

AXPLOT(T™ XM ,R: R2,IV,12);

movepen{330.0/R1, -40.0/R2),

print plotter(10,1) ,£Time(days)?;

movepen(-50,0/R!,200.0/R2) ;

if v=0 then print plotter(i0,3) ,freepoint(s) ,E,€*F I / F J?
slse print plotter(10,3) ,frespoint(3) ,E,€*R? digits(2) ,NS[J];
movepen{TPL[1],E*XPL[1,J)) ;penlower;

for 1:=2 step 1 until K do drawline(TPL[I],E*XPL[I,J]);

1f v=0 then print plotter(10,3),£F?,digite(?) NS[J),€ / F?,N6[J]
else print plotter(10,1) ,£R?,digite(2) ,NS[J]:
movepen{0,70*12);

snd of plot FXS[I]/FXS[1}:
1f v=1 then goto L8;
comment Plot RT[7] vs time for specified indices I;
L7: 1f NR=0 then goto L8;V:z1:N'=NR;
for J:=1 step 1 until NR do
begin reed U,N3[JT:=U;

for 1:=1 step 1 until M do XPL[I,J):=RTPL{I,U];

ond; goto 1.9;
comment end of plot RT(I};

18- N =N:comment Dummy,
ond;
ond;

MY




